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Abstract Alphabet overlap digraphs can be viewed as a generalization of directed de
Bruijn graphs. Given three integers α ≥ 1, k ≥ 2 and 1 ≤ i < k, the alphabet overlap
digraph O(α, k; i) is a digraph: the set of all words of length k over a certain alphabet
with cardinality α is vertex set, and there is an arc from a vertex u to a vertex v if and
only if the word of last k − i letters of u coincides with the word of first k − i letters
of v. In this paper, we consider whether O(α, k; i) can be embedded in O(α, k; j) for
given integers 1 ≤ i < j < k. In order to resolve this problem, we give an O(1)-time
algorithm to decide whether there exists a permutation on {1, . . . , k} from O(α, k; i)
to O(α, k; j). If such a permutation exists, for any vertex of O(α, k; i), we apply
the permutation to change its label’s position and map it to a vertex of O(α, k; j).
Furthermore, we obtain an embedding from O(α, k; i) to O(α, k; j). Hence, we
solve partly the problem. As a consequence, we show that every directed de Bru-
ijn graph can be embedded in all alphabet overlap digraphs with the same parameters
α and k.
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1 Introduction

For given two integers α ≥ 1 and k ≥ 2, directed de Bruijn graph B(α, k) [3] is a
directed graph with ak vertices labeled by the words of length k over a certain alpha-
bet with cardinality α: there is an arc from a vertex v labeled by (v1, . . . , v2) to a
vertex w labeled by (w1, . . . , wk) if and only if vi = wi−1 for i = 2, . . . , k. The
out-degree and in-degree of each vertex are both equal to α. Alphabet overlap digraph
O(α, k; i) (1 ≤ i < k) can be viewed as a generalization of B(α, k). O(α, k; i) is
a directed graph with the same vertex set as that of B(α, k). Furthermore, there is an
arc from a vertex v labeled by (v1, . . . , v2) to a vertex w labeled by (w1, . . . , wk) if
and only if v j = w j−i for j = i + 1, . . . , k. The out-degree and in-degree of each
vertex are both equal to αi . We can see that O(α, k; 1) ∼= B(α, k) and the line digraph
of O(α, k; i) is isomorphic to O(α, k + i; i).

Błażewicz et al. [2] introduced DNA graph which can be viewed as a vertex induced
subgraph of directed de Bruijn graph B(4, k) for some integer k with the alphabet
{A, C, G, T } corresponding to the four nucleotides of DNA chains: adenine, cyto-
sine, guanine and thymine. Pendavingh et al. [6] showed that it is a NP-hard problem
to decide whether a given digraph is a DNA graph. Wang et al. [7] generalized the
definition of DNA graph as a vertex induced subgraph of alphabet overlap digraph
O(4, k; i) for some integers k and i with 1 ≤ i < k. Then, they showed that a digraph
is a DNA graph if and only if it is a line digraph.

Recently, Godbole et al. [4] introduced alphabet overlap graph G(α, k; i), which
can be viewed as the graph obtained from the underlying graph of O(α, k; i) by delet-
ing all its loops. In [4], they showed that G(α, k; i) is Hamiltonian, and obtained that
χ(G(α, k; i)) = α2i−k + αk−i when i ≥ k/2, and χ(G(α, k; i)) ≤ 1 + αk−i when
i < k/2.

Now, we consider two digraphs D1 = O(α, k; i) and D2 = O(α, k; j) with i < j .
Since V (D1) = V (D2) and for any vertex v, dD1(v) = αi < α j = dD2(v), we guess
that D1 is a spanning subgraph of D2. But, this is not always true. For example, let
α = 2, k = 4, i = 1 and j = 2. We can see that (2, 1, 2, 1) is an out-neighbor of
(1, 2, 1, 2) in D1, but it is not an out-neighbor in D2. So we pose another problem: is
D1 isomorphic to a spanning subgraph of D2, i.e., can D1 be embedded in D2?

In this paper, we first show that D1 can be embedded in D2 when i + j ≥ k.
The main idea of this solution is to find a suitable permutation on {1, . . . , k}. For any
vertex of D1, we can map it to a vertex of D2 by applying the permutation to change
its label’s positions. Furthermore, this map gives us an embedding of D1 into D2.
Hence, in Sect. 3, we consider whether such a permutation exists when i + j < k.
When 2 j ≥ k, we show that the answer is true if and only if an inequality holds. When
2 j < k, we give an O(1)-time algorithm to determine whether such a permutation
exists. As an example, we consider the case i = 1 in Sect. 4, and show that such a
permutation always exists for any integers j and k. Accordingly, we prove that very
directed de Bruijn graph can be embedded in all alphabet overlap digraphs with the
same parameters α and k. As corollaries of this result, all alphabet overlap digraphs
are pancyclic and D1 can be embedded into D2 if i is a common factor of k and j . We
conclude this paper with our main results (Theorem 5.1).
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2 Case i + j ≥ k

In the following, we suppose that α > 0 and k > 1 are two integers. For convenience,
we use D1 and D2 to denote O(α, k; i) and O(α, k; j), respectively, where i, j are
two integers with 1 ≤ i < j < k. The main method to resolve the problem is to find
a bijection f from V (D1) to V (D2) such that for any two vertices u and v in D1, if
(u, v) is an arc of D1, then ( f (u), f (v)) is also an arc of D2.

Lemma 2.1 Let α, k, i , j , D1 and D2 be defined as above. If i + j ≥ k, then D1 can
be embedded in D2.

Proof We define a map f as follows: for any vertex v=(l1(v), . . . , l j−i (v), l j−i+1(v),

. . . , l j (v), l j+1(v), . . . , lk(v)) in D1, let

f (v) = ( l1( f (v)),. . ., li ( f (v)),li+1( f (v)),. . ., l j ( f (v)), l j+1( f (v)), . . . , lk( f (v)) )

= ( l j−i+1(v), . . . , l j (v), l1(v), . . . , l j−i (v), l j+1(v), . . . , lk(v) ).

We can see that for any vertex v, f (v) is obtained from v by applying a fixed permu-
tation to change the position of its label. So f is a bijection and we have

lt (v) =
⎧
⎨

⎩

lt+i ( f (v)), 1 ≤ t ≤ j − i ,
1t− j+i ( f (v)), j − i + 1 ≤ t ≤ j ,
lt ( f (v)), j + 1 ≤ t .

(2.1)

Then, we shall show that D1 can be embedded in D2 under bijection f . Let u
and v be two vertices of D1 such that (u, v) is an arc of D1. By the definition of the
alphabet overlap digraphs, we have (li+1(u), . . . , lk(u)) = (l1(v), . . . , lk−i (v)). For
any integer t ≥ j + 1 > i + 1, by Eq. 2.1, we have

lt ( f (u)) = lt (u) = lt−i (v) = lt−i− j+i ( f (v)) = lt− j ( f (v)).

Hence, ( f (u), f (v)) is an arc of D2. ��

3 Case i + j < k

In this section, we consider the case: i + j < k. In Sect. 2, we find a permutation on
{1, . . . , k} from which we can deduce a bijection from V (D1) to V (D2). And from
this bijection, we obtain an embedding from D1 to D2 when i + j ≥ k. For conve-
nience, this permutation is called a permutation from D1 to D2. Naturally, we propose
another problem as follows. For any integers 1 ≤ i < j < k, is there a permutation
� on {1, . . . , k} from D1 to D2? Unfortunately, this problem is not always true. For
example, there is no such a permutation from O(2, 6; 2) to O(2, 6; 3). Hence, the
main work of this section is to decide whether such a permutation exists.

Let D1 and D2 be defined as above. Suppose that there is a permutation � =( 1 2 ··· k
π1 π2 ··· πk

)
from D1 to D2. This implies that for any two vertices u = (u1, . . . , uk)

and v = (v1, . . . , vk) of D1, if (u, v) is an arc of D1, then ( f (u), f (v)) is also an
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arc of D2 where f is a bijection from V (D1) to V (D2) obtained from � as Sect. 2.
Since (u, v) is an arc of D1, v = (u1+i , . . . , uk+i ). Then, f (u) = (uπ1, uπ2 , . . . , uπk )

and f (v) = (vπ1 , vπ2 , . . . , vπk ) = (uπ1+i , uπ2+i , . . . , uπk+i ). Because ( f (u), f (v))

is also an arc of D2, we have that

(uπ j+1 , . . . , uπk ) = (vπ1 , . . . , vπk− j ) = (uπ1+i , . . . , uπk− j +i ).

This implies the following system of equations

π1 + i = π1+ j , . . . , πk− j + i = πk . (3.1)

Hence, we obtain that there exists a permutation � from D1 to D2 if and only if system
of Eq. 3.1 has an integer solution (π1, . . . , πk) such that 1 ≤ πi ≤ k and distinct πi

have different values. We call such a solution a feasible solution.
In the following, we shall consider whether system of Eq. 3.1 has a feasible solu-

tion. For any two integers i and j with i ≤ j , we use interval [ i, j ] to denote the
integer set {i, i + 1, . . . , j}. Firstly, we classify the problem into two cases accord-
ing to whether there are variables appear in the both sides of (3.1), i.e., whether
[ 1, k − j ]⋂[ j + 1, k ] = ∅.

Then, we consider the first case: [ 1, k − j ]⋂[ j + 1, k ] = ∅, i.e., k ≤ 2 j . This
implies that any variable in the left side does not appear in the right side of system
of Eq. 3.1. Let n1 and m1 be two integers with k = n1i + m1(1 ≤ m1 ≤ i) and G a
graph with vertex set {1, . . . , k}. For any two vertices u and v of G, they are adjacent
if and only if |u − v| = i . Clearly, G is composed of m1 paths with length n1 and
i − m1 paths with length n1 − 1, i.e., G ∼= m1 Pn1+1

⋃
(i − m1)Pn1 , where Pn1 is a

path with length n1 − 1. We can see that (3.1) has a feasible solution if and only if
G has a matching with cardinality k − j . Since G ∼= m1 Pn1+1

⋃
(i − m1)Pn1 , the

cardinality of its maximum matching is m1� n1+1
2 � + (i − m1)� n1

2 �. Accordingly, we
obtain the following result.

Lemma 3.1 Let α, k, i , j , n1, m1, D1 and D2 be defined as above. Suppose that
i + j < k and 2 j ≥ k. There is a permutation from D1 to D2 if and only if m1� n1+1

2 �+
(i − m1)� n1

2 � ≥ k − j . Furthermore, if m1� n1+1
2 � + (i − m1)� n1

2 � ≥ k − j , D1 can
be embedded in D2.

For example, let D1 = O(2, 6; 2) and D2 = O(2, 6; 3). Then n1 = 2, m1 = 2 and

m1�n1 + 1

2
� + (i − m1)�n1

2
� = 2 < 3 = k − j.

Hence, there is no such a permutation from O(2, 6; 2) to O(2, 6; 3) as we mentioned
at the beginning of this section.

123



66 J Math Chem (2010) 47:62–71

Finally, we consider the other case: [ 1, k − j ]⋂[ j + 1, k ] 	= ∅, i.e., k > 2 j .
Let n2 and m2 be two integers with k = n2 j + m2(1 ≤ m2 ≤ j). In this case, (3.1) is
equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 + n2i = · · · = π1+(n2−1) j + i = π1+n2 j
...

...
...

...

πm2 + n2i = · · · = πm2+(n2−1) j + i = πm2+n2 j

πm2+1 + (n2 − 1)i = · · · = πm2+1+(n2−1) j
...

...
...

π j + (n2 − 1)i = · · · = π j+(n2−1) j

(3.2)

Let G be constructed as above case and G
′ = m2 Pn2+1

⋃
( j −m2)Pn2 . We can see that

the system of Eq. 3.2 has a feasible solution if and only if G
′
is a spanning subgraph of

G. This means that for every path of G, we can divide it into some paths with length
n2 or n2 − 1, and we obtain exactly m2 paths with length n2 and j − m2 paths with
length n2 − 1 in the whole graph G. Hence, (3.1) has a feasible solution if and only if
the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1n2 + β1(n2 + 1) = n1 + 1
...

...
...

αm1 n2 + βm1(n2 + 1) = n1 + 1
αm1+1n2 + βm1+1(n2 + 1) = n1

...
...

...

αi n2 + βi (n2 + 1) = n1

(3.3)

has a non-negative integers solution (α1, . . . , αi , β1, . . . , βi ) satisfying the constraint
condition

i∑

t=1

αt = j − m2,

i∑

t=1

βt = m2. (3.4)

Since the system of equations

{
xn2 + y(n2 + 1) = k
x + y = j

has a unique solution (x, y) = ( j − m2, m2), the constraint condition (3.4) can be
replaced by

i∑

t=1

(αt + βt ) = j. (3.5)
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In the following, we shall resolve the system of Eq. 3.3 with constraint condition
(3.5). Obviously, −(n1 + 1)n2 + (n1 + 1)(n2 + 1) = n1 + 1. Let α = −(n1 + 1), β =
n1 + 1 and q = � α

n2+1�. Set α := α + q(n2 + 1) and β := β − qn2. Then,

αn2 + β(n2 + 1) = (−n1 − 1 + q(n2 + 1))n2 + (n1 + 1 − qn2)(n2 + 1)

= −(n1 + 1)n2 + (n1 + 1)(n2 + 1) = n1 + 1

and α is the minimum non-negative integer with αn2 + β(n2 + 1) = n1 + 1. Now,
if β < 0, this implies that there does not exist non-negative integer solution of this
equation. Similarly, we can decide whether equation αn2 +β(n2 +1) = n1 has a non-
negative integer solution. Hence, we can determine whether (3.3) have non-negative
integer solutions.

Then, we will consider the constraint condition (3.5). Let A = (α1, . . . , αi , β1, . . . ,

βi ) be an integer solution of (3.3) and Sum(A) = ∑i
t=1(αt + βt ). For any integers h

and p with 1 ≤ h ≤ i , let A
′ = (α

′
1, . . . , α

′
i , β

′
1, . . . , β

′
i ), where α

′
h = αh + p(n2 +1),

β
′
h = βh − pn2 and α

′
t = αt , β

′
t = βt when t 	= h. We can see that A

′
is also an

integer solution of (3.3) and

Sum(A
′
) =

i∑

t=1

(α
′
t + β

′
t ) =

i∑

t=1

(αt + βt ) + p(n2 + 1) − pn2 = Sum(A) + p.

Therefore, suppose that (α, β) and (α
′
, β

′
) are the non-negative solutions of αn2 +

β(n2 + 1) = n1 + 1 and α
′
n2 + β

′
(n2 + 1) = n1 with minimum integers α and α

′
,

respectively, we can see that

A = (α, . . . , α, α
′
, . . . , α

′
, β, . . . , β, β

′
, . . . , β

′
)

is a non-negative integer solution of (3.3) and Sum(A) is minimum among all non-
negative integer solutions of (3.3). Similarly, we can find another non-negative integer
solution A

′
such that Sum(A

′
) is maximum. So, if Sum(A) ≤ j ≤Sum(A

′
), (3.3)

has a non-negative integer solution satisfying (3.5). Hence, we obtain the following
algorithm and result.

Algorithm 1:
Input: Three integers i , j and k with 1 ≤ i < j < k and k > 2 j ;
Output: Whether exists a permutation from O(α, k; i) to O(α, k; j);

1. set n1 := � k−1
i �, m1 := (k − 1)%i + 1, n2 := � k−1

j �, m2 := (k − 1)% j + 1;

2. set α := −(n1 + 1), β := n1 + 1 and α
′ := β

′ := 0;

3. set q := � −α
n2+1� and α := α + q(n2 + 1), β := β − qn2;

if β < 0, return False; End. //whether (3.3) has a non-negative solution
else, Goto 4;
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4. set α
′ := α + 1, β

′ := β − 1;
if α

′ = n2 + 1, set α
′ := 0 and β

′ := β
′ + n2;

if β
′
< 0, return False; End. //whether (3.3) has a non-negative solution

else Goto 5;

5. set j
′ := m1(α + β) + (i − m1)(α

′ + β
′
);

if j
′
> j , return False; End. //whether Sum(A)≤ j

else, set q1 := � n1+1−αn2
n2(n2+1)

�, q2 := � n1−αn2
n2(n2+1)

� and j
′ := j

′ +m1q1+(i−m1)q2;

if j
′
< j , return False; End. //whether Sum(A′)≥ j

else return True; End.

Lemma 3.2 Let α, k, i , j , D1 and D2 be defined as above. Suppose that i + j < k
and 2 j < k. There is a permutation from D1 to D2 if and only if the return value of
Algorithm 1 is True. Furthermore, if the return value is True, D1 can be embedded in
D2.

4 An example

In this section, we consider a special case when i = 1. In this case, we can obtain the
following lemma.

Lemma 4.1 For any integers α, k, i and j with 1 = i < j < k, O(α, k; 1) can be
embedded in O(α, k; j).

Proof Firstly, we construct graph G as Sect. 3. Since i = 1, we can see that G ∼= Pk .
If j = k − 1, by Lemma. 2.1, O(α, k; 1) can be embedded in O(α, k; j). If �k/2� ≤
j < k − 1, then i + j < k and 2 j ≥ k. Since the cardinality of maximum matching
of G is �k/2� ≥ k − j , O(α, k; 1) can be embedded in O(α, k; j). Otherwise, let
k = n2 j + m2 and G

′ = m2 Pn2+1
⋃

( j − m2)Pn2 as Sect. 3. It is easy to see that
G

′
is a spanning subgraph of G as Fig. 1. Hence, O(α, k; 1) can be embedded in

O(α, k; j). ��
Furthermore, we can obtain a permutation � efficiently. If j = k −1, we can obtain

it by Lemma 2.1. In other cases, let k = n2 j + m2 and construct graphs G ∼= Pk and
G

′ ∼= m2 Pn2+1
⋃

( j − m2)Pn2 ( if 2 j ≥ k, we see a matching with cardinality k − j
as (k − j)P2

⋃
(2 j − k)P1 ). It is easy to see that we can get a permutation � from

following algorithm.

Algorithm 2:
Input: Two integers j and k with 1 < j < k;
Output: A permutation � = ( 1 2 ··· k

π1 π2 ··· πk

)
from O(α, k; 1) to O(α, k; j) for any integer

α;

1 set t := 0 and q := 1;
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1

2m 2m j+

1 j+ 21 ( 1)n j+ -
21 n j+

2 2( 1)m n j+ - 2 2m n j+

2 21 ( 1)m n j+ + -

2n jj 2 j

2 1m + 2 1m j+ +

2

3

k

kP

2 1nP +

2 1nP +

2nP

2nP

G 'G

1k -

Fig. 1 G ∼= Pk and G
′ ∼= m2 Pn2+1

⋃
( j − m2)Pn2

2 if q > j , then all elements of {π1, . . . , πk} are valued; End.
else, set p := q, t := t + 1 and πp := t ;

3 set p := p + j ;
if p > k, set q := q + 1, Goto 2;
else, set t := t + 1, πp := t , Goto 3;

It is easy to see that the time complexity of Algorithm 2 is O(k). Furthermore, from
Lemmas 2.1,3.1 and 3.2 and Algorithm 1, if there are permutations from O(α, k; i)
to O(α, k; j), we can also construct such a permutation in O(k) time.

A directed graph H of order n is pancyclic if it has cycles of all length 3, 4, . . . , n.
Every directed de Bruijn graph B(α, k) is pancyclic (cf. Refs. [5] and [1], p. 308).
By Lemma 4.1, every directed de Bruijn graph can be embedded in alphabet overlap
digraph with the same parameters α and k. So we can obtain the following result.

Corollary 4.2 Every alphabet overlap digraph is pancyclic.

Lemma 4.3 Let α, k, i be defined as above and d a common divisor of k and i . Then
O(α, k; i) ∼= O(αd , k/d; i/d).

Proof Let k
′ = k/d and i

′ = i/d. For convenience, we set D1 = O(α, k; i) and
D2 = O(αd , k

′ ; i
′
) and replace alphabet set {1, . . . , α} by {0, . . . , α − 1}. Firstly, we

give a map f from V (D1) to V (D2) as follows. For any vertex v = (v1, . . . , vk) of D1,
let f (v) = ( f1, . . . , fk′ ) be a vertex of D2, where ft = v(t−1)d+1α

(d−1)+· · ·+vtdα0,

for every t ∈ {1, . . . , k
′ }. This implies that (v(t−1)d+1, . . . , vtd) is the representation

of ft by α-nary numeral system with d-digit. Hence, we can see that f is a bijection.
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Furthermore, let u and v be two vertices of D1 such that (v, u) is an arc of D1.
Suppose that u = (u1, . . . , uk) and f (u) = ( f

′
1, . . . , f

′
k′ ). We have that

(v, u) is an arc of D1;
∼= for any t ≥ i + 1, vt = ut−i ;
∼= for any t

′ ∈ {i ′ + 1, . . . , k
′ }, (v

(t ′−1)d+1, . . . , vt ′ d)

= (u
(t ′−i ′−1)d+1, . . . , u

(t ′−i ′ )d);
∼= for any t

′ ∈ {i ′ + 1, . . . , k
′ }, ft ′ = f

′
t ′−i ′ ;∼= ( f (v), f (u))is an arc of D2.

Hence, D1 ∼= D2. ��
Now, we consider a special case when i is a common divisor of k and j . Let k = k

′
i

and j = j
′
i . By Lemma 4.3, we have O(α, k; i) ∼= O(αi , k

′ ; 1) and O(α, k; j) ∼=
O(αi , k

′ ; j
′
). By Lemma 4.1, O(αi , k

′ ; 1) can be embedded in O(αi , k
′ ; j

′
). So we

obtain the following result.

Corollary 4.4 Let α, k, i and j be defined as above. If i is a common divisor of k and
j , O(α, k; i) can be embedded in O(α, k; j).

5 Conclusion

In this paper, we consider the problem: for given integers α, i , j and k with 1 ≤ i <

j < k, whether O(α, k; i) can be embedded in O(α, k; j). In order to resolve the prob-
lem, we pose another problem: for given integers α, i , j and k with 1 ≤ i < j < k,
whether there exists a permutation � from O(α, k; i) to O(α, k; j). We solve the
second problem completely. The main result of this paper is obtained by Lemmas 2.1,
3.1 and 3.2 as follows.

Theorem 5.1 For given integers α, i , j and k with 1 ≤ i < j < k, there exists a
permutation � from O(α, k; i) to O(α, k; j) if and only if

(1) m1� n1+1
2 � + (i − m1)� n1

2 � ≥ k − j (where n1 and m1 are two integers with
k = n1i + m1 and 1 ≤ m1 ≤ i ), when 2 j ≥ k;

(2) the return value of Algorithm 1 is True, when 2 j < k.

Furthermore, if there exist permutations from O(α, k; i) to O(α, k; j), O(α, k; i) can
be embedded in O(α, k; j) and we can construct such a permutation in O(k) time.

Remark 1 If i + j ≥ k, we have that 2 j ≥ k and m1� n1+1
2 � + (i − m1)� n1

2 � ≥ k − j .
Hence, Lemmas 2.1 and 3.1 are combined into Theorem 5.1.

Note that even if there is no a permutation from O(α, k; i) to O(α, k; j), O(α, k; i)
may be embedded in O(α, k; j). For example, there is no a permutation from O(2, 6; 2)

to O(2, 6; 3), but O(2, 6; 2) can be embedded in O(2, 6; 3). Hence, we only solve

123



J Math Chem (2010) 47:62–71 71

partly the first problem. The future work is to find some new methods to resolve the
first problem completely.
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